Hairy polyps are a rare malformation lesion comprising both ectodermal and mesodermal elements. The lesion was first described in the English literature by Brown-Kelly in 1918, and to date more than 150 cases have been documented. Meningothelial elements are an extremely rare histologic finding in hairy polyps. To the best of our knowledge, there has been only one case cited in the English literature. Here we report an unusual case of a hairy polyp with a meningothelial element.

CASE REPORT

A 1-year-old boy visited our hospital with a chief complaint of a congenital oropharyngeal mass. He was born by spontaneous vaginal delivery at full term. His birth weight was 3,021 grams. On physical examination, the oral cavity exhibited a 0.7 cm sized bean-like pedunculated mass with soft consistency, which originated from the hard palate. Hypospadiasis of the penis was also noted. Simple x-ray and computed tomography demonstrated a defect of the alveolar bone and an incomplete cleft palate. Magnetic resonance imaging showed no obvious connection between the palatal mass and the central nervous system. Surgical excision of the mass was performed, and a local flap was made. On gross examination, the specimen was an oval yellowish white solid mass with a smooth outer surface. The cut surface had a homogeneous tan-yellowish white fibrotic appearance. Immunohistochemical staining of the cells lining the pseudovascular spaces and the interstitial cells revealed vimentin and epithelial membrane antigen positivity (Fig. 1). These cells were negative for S-100 protein, cytokeratin, factor VIII-related antigen, alpha-fetoprotein, Ulex europaeus lectin, and glial fibrillary acidic protein.
DISCUSSION

Meningothelial tissue is a rare histologic finding in a hairy polyp. Some proposed theories of extracranial meningothelial proliferation can be applied to explain the meningothelial element in a hairy polyp. Arachnoid cells in the sheaths of peripheral and cranial nerves can be a source of extracranial meningothelial proliferation.4,5 The inclusion theory suggests that germinal layers become displaced in deeper tissue layers, inhibiting normal fusion during embryogenesis and causing development of a mass.6 Heterotopic glial tissue in the nasal fossa in the form of a nasal glioma may be another example of displaced neuroectodermal cells.7 Totipotential cells escape the normal mechanisms of regulation and control in the embryo and lead to formation of a mass.4,8

The main histologic differential diagnosis of meningothelial elements in a hairy polyp includes endodermal sinus tumors, meningothelial heterotopia, rudimentary meningoceles, and angiomatosis. In endodermal sinus or yolk sac tumors, cells with atypical cytologic features, eosinophilic hyaline globules and Schiller-Duval bodies are characteristic.9 Negativity for cytokeratin, alpha-fetoprotein, factor VIII-related antigen, and Ulex europaeus can help to exclude endodermal sinus tumors and vasoformative lesions from the differential diagnosis. Unlike hairy polyps, meningothelial heterotopias of the skin and rudimentary meningoceles occur primarily in the subcutis of the scalp.10,11

Surgical excision is the treatment of choice for hairy polyps. However, preoperative evaluation for the presence of intracranial connections is important because encephaloceles and other lesions with intracranial connections may clinically resemble this lesion.1

Although this histologic entity is extremely rare, recognition and awareness are necessary so pathologists will avoid confusion with other differential lesions.
REFERENCES