Granular cell tumor (GCT) is an uncommon neoplasm and was first described in 1926 as myoblastic myomata by Abrikossoff. It was later reported that it can occur anywhere in the body and suggested that it is of schwannian origin. GCT generally follows a benign clinical course, but can be clinically misdiagnosed as breast cancer, because patients present with an irregular margined firm to hard painless mass, which can closely simulate a malignant lesion. However, GCT usually has a distinctive cytologic appearance, and therefore fine needle aspiration cytology (FNAC) has been suggested as an effective and accurate diagnostic tool. In a survey of the literature, we found that the radiologic features of mammary GCT and FNAC findings of soft tissue GCT have been previously documented in Korea, but we were unable to find a report containing the FNAC findings of mammary GCT. Thus, here, we describe the FNAC findings of GCT in the breast, and discuss the differential diagnosis of this benign tumor.
CASE

A 50-year-old woman presented with a slowly growing painless mass in her right breast. A physical examination revealed a firm, unmovable, small palpable mass in the outer upper quadrant of the right breast. No axillary lymphadenopathy was observed. Mammography and ultrasonography revealed a 7mm sized well-defined heterogeneous echoic nodule (Fig. 1 A and B). There was no associated calcification. Moreover, the mammographic and ultrasonographic appearances of the lesion were highly suggestive of an invasive carcinoma.

Cytological Findings

Smears were moderately cellular and contained small numbers of isolated cells and cellular syncytial clusters (Fig. 2A). Moreover, backgrounds were clear without necrotic materials or blood. These cells had round to oval nuclei, abundant oncocytic granular cytoplasm, and low nucleocytoplasmic ratio. Nuclei were two to three times larger than red blood cells with evenly distributed chromatin and occasional small nucleoli. Cytoplasmic borders were poorly defined, numerous fine, evenly distributed, granular materials were observed in backgrounds (Fig. 2B), and naked nuclei were frequently seen. Non-apocrine ductal cells and myoepithelial cells were not easily identified. The cells were interpreted as benign apocrine cells, and the initial diagnosis was of fibrocystic change accompanied by apocrine metaplasia.

Histological Findings

Excisional biopsy was performed for a definitive diagnosis due to the diagnostic radiologic and cytologic discrepancies. The cut-surface of the tumor showed a poorly circumscribed, grayish white solid lesion, measuring 0.7 × 0.6 cm. Microscopically the tumor showed an infiltrative growth pattern, and entrapped benign ducts and fat tissue (Fig. 2C). In addition, cellular sheets of round to polygonal cells with abundant finely eosinophilic granular cytoplasm were observed. Nuclei were round to oval and finely granular with occasional small nucleoli (Fig. 2D). However, nuclear atypia, mitosis, and necrosis were not observed. Cytoplasmic granules were positive to periodic acid-Schiff reagent, and tumor cells were strongly positive for S-100 protein, weakly positive for CD68, and negative for cytokeratin, vimentin, HMB45, smooth muscle actin (SMA), desmin, and epithelial membrane antigen (EMA). The histologic diagnosis was of GCT arising in the breast.
DISCUSSION

GCT may occur in a variety of visceral and cutaneous locations. However, few reports describe the FNAC features of GCT arising in the breast. The cytological findings of this tumor include sheets of cells with abundant eosinophilic, finely granular cytoplasm, eccentrically located oval to round nuclei with fine nuclear chromatin, and occasional small inconspicuous nucleoli. Mild nuclear atypism can be present and naked nuclei are frequently found, and cytoplasmic granular materials are occasionally smeared in the background.

Various benign and malignant findings of breast lesions, such as, fibrocystic change with apocrine metaplasia, fat necrosis, and ductal carcinoma with apocrine metaplasia are considered in the differential diagnosis. Apocrine cells in fibrocystic change with apocrine metaplasia tend to have well-defined cytoplasmic borders in contrast to the indistinct cell borders of GCT. Moreover, cytoplasmic granularity is more distinct in GCT. Usually benign apocrine cells derived from cyst-lining cells are smeared in two dimensional sheets (based on personal experience) and are accompanied by myoepithelial cells, in contrast to the three dimensional syncytial cell clusters encountered in GCT.

Fig. 2. (A) The cytologic smears are composed of a small number of scattered isolated cells and clusters of epithelial sheets, (Papanicolaou). (B) The tumor cells show round to oval nuclei with an abundant granular cytoplasm, Numerous fine granular materials are evenly distributed on the background. Nuclei are finely granular with small nucleoli, (Papanicolaou). (C) Histologic section shows infiltrative solid lesion with entrapped adipose tissue and ducts, (H&E). (D) The tumor cells show abundant eosinophilic finely granular cytoplasm, low nucleocytoplasmic ratio, and monotonous round to oval nuclei, (H&E).
Moreover, histiocytes are observed in regions of fat necrosis, in cystic fluid, and in chronic inflammatory conditions, which resembles that observed in GCT. However, histiocytes often contain indented nuclei and the cytoplasm tends to be foamy rather than granular and may contain pigment or cell debris. Malignant breast lesions accompanying apocrine change, such as, ductal carcinomas with apocrine change and pure apocrine carcinomas should be distinguished from granular cell tumors, and careful examination of nuclear features could identify these malignant lesions and avoid overdiagnosis. The cytologic features of most GCT cases include benign morphologic characteristics, such as, fine chromatin, smooth nuclear membranes, and low nucleocyttoplasmic ratios. Although the cytologic features of soft tissue GCT have been well described, and the cytologic features of GCT occurring in breast are resemble those of soft tissue GCT, the lists of differential diagnosis of GCT in the breast differ from those of soft tissue GCT such as alveolar soft tissue sarcoma, rhabdomyosarcoma, and fat necrosis.

In the described case, clinical and radiologic features suggested malignancy, but aspirate findings were of benign apocrine metaplasia in a background of fibrocystic change. This discrepancy between clinical and cytologic diagnosis is attributed to the mimicking of malignant lesions (both clinically and radiologically) and of an apocrine cell cytology due to the presence of eosinophilic cytoplasmic granules in GCT. However, suspicion of this entity should have resulted from the lack of naked myoepithelial cells and three dimensional cellular clusters in aspirate. In our literature review, some cases were not correctly diagnosed preoperatively as granular cell tumour, although in a small number of reported cases this diagnosis was correctly suggested by FNAC.

In conclusion, we emphasize that pathologists should be aware that GCT may occur in the breast, and that this diagnosis should be considered when an aspirate containing cells with abundant granular cytoplasm and benign nuclear features is encountered despite preoperative clinical and radiological features indicative of carcinoma.

REFERENCES