Glial Choristoma of the Middle Ear

- A Case Report -

Su-Jin Kim • Dae-Cheol Kim

Department of Pathology, Dong-A University College of Medicine, Busan, Korea

Received: July 12, 2007
Accepted: September 20, 2007

Corresponding Author
Dae-Cheol Kim, M.D.
Department of Pathology, Dong-A University College of Medicine, 1 3-ga, Dongdaeshin-dong, Seo-gu, Busan 602-713, Korea
Tel: 051-240-2878
Fax: 051-243-7396
E-mail: freehand@dau.ac.kr

Glial choristoma is defined as a mass that is composed of mature, normal brain tissue, isolated from the cranial cavity or spinal canal. The involvement of an extracranial non-midline location, especially the middle ear or mastoid region, is quite exceptional. We report here on a case of glial choristoma of the middle ear in a 2-year-old boy. He presented with otalgia and otorrhea that had lasted for 6 months, and radiological studies revealed a mass-like lesion with soft tissue density in the middle ear cavity. The patient underwent simple mastoidectomy and tympanoplasty. Histologically, the mass was composed of disorganized but mature, normal glial tissue with immunoreactivity for glial fibrillary acidic protein. The patient had no previous history of head trauma or surgery, and no evidence of central nervous system connection was noted on the radiological or operative findings. This mass was regarded as a primary glial heterotopia rather than an acquired encephalocele.

Key Words: Choristoma; Glia; Middle ear
DISCUSSION

Heterotopic glial tissue was initially described in 1907 by Wolbach. Heterotopic glial tissues in various sites have since been reported, and these have been classified based on their locations and possible pathogenetic mechanisms. Most of them were intracranial, leptomeningeal, or extracranial midline lesions, and they were considered to represent displaced brain tissue during development. There have been only rare reports of extracranial non-midline lesions, and they have been found in the scalp, eye, orbit, lung, peritoneum, and middle ear. The most common type of choristoma of the middle ear is a salivary gland choristoma and this is commonly associated with branchial cleft and facial nerve abnormalities, which suggests that choristomas arise as the products of developmental errors.

Glial choristoma is rarely found in the middle ear cavity, and two terms, heterotopia and encephalocele (encephalic herniation), are often confused. However, they are different and have to be differentially diagnosed because the patients with encephalocele have the potential risk for meningitis. The distinction is whether or not there is a patent connection with the cranial cavity, but it is sometimes difficult or even impossible to definitively determine whether a case is heterotopia or encephalocele. Pathogenetically, the commonly accepted theory is that heterotopic neural tissue is a variant of encephalocele. Most of the previously reported cases in the middle ear and mastoid lesion have been described as having an association with previous trauma, surgery, or an inflammatory process. Patients with this condition are older than the patients with their midline counterparts, and bony skull defects with CSF leakage are revealed by the radiological and operative finding in many cases, which supports the idea that lesions originate from an acquired encephalocele. In the literature, chronic infection or inflammation, previous trauma, or surgical procedures have been described as the predisposing factors for the development of middle ear heterotopia or encephalocele. For our case, the 2-year-old boy had no previous history of trauma or surgical procedures, and there was no evidence of any connection with the central nervous system on the radiological study and there was no CSF leakage on the operation. Although the patient presented with otalgia and otorrhea, there were few inflammatory cells in the glial and surrounding connective tissue, as seen on the histological study.

Gyure et al. reported 15 cases of neuroglial heterotopia of the middle ear and mastoid region, and they found that eight of ten patients for whom clinical information was available had a history of chronic infection, previous surgery, trauma, or surgical evidence of a central nervous system (CNS) connection. The authors concluded that most of neuroglial choristomas were acquired encephaloceles rather than developmental lesions. However, in their cases, a few patients had no predisposing factors and no evidence of a connection of their lesions to the central nervous system. Lee et al. also reported on a case having neither apparent predisposing factors nor evidence of a connection between the lesion and the central nervous system, and these case should be regarded as true neuroglial heterotopia rather than acquired encephalocele.

Fig. 1. Magnetic resonance imaging (A) and computed tomography (B) reveal a mass-like lesion with soft tissue density, measuring 1 cm in diameter in the left middle ear and mastoid region with evidence of chronic otitis media in the left middle ear.
Histologically, heterotopic brain tissue is characterized by various proportions of neurons and glia with associated chronic inflammation, chorid plexus and ependymal or leptomenigeal components. Iurato et al. found that for idiopathic, true neuroglial heterotopia, there are no chronic inflammatory cells such as macrophages and lymphocytes, which differs from secondary encephalocele. Heterotopic glial tissue must be distinguished from true neoplasms such as glioma or ganglioglioma. In our case, the mass shows mature, normal glial tissue with few chronic inflammatory cells. There was no hypercellularity, nuclear atypism, or cellular pleomorphism, and true neoplasms were easily excluded.

In summary, most of the previously reported cases of glial heterotopia of the middle ear can be regarded as acquired encephalocele associated with previous trauma, surgery, or inflammatory processes. However, our case was a 2-year-old boy without any history of congenital anomalies, trauma or surgery, and there was no evidence of a cranial bone defect or CSF leakage on the radiological and operative findings. Although the patient presented with otalgia and otorrhea, we believe that this case was a primary glial heterotopia rather than an acquired encephalocele.
REFERENCES


