Immunohistochemical Expression of the Sodium/Iodide Symporter in Patients with Primary Lung Cancer

Hyoun Wook Lee1 ∙∙
Do Young Kang2 ∙ Phil Jo Choi3
Doo Kyung Yang4 ∙ Ki Nam Kim5
Kyung Eun Lee6 ∙ Mee Sook Roh1,6

Departments of 1Pathology, 2Nuclear Medicine, 3Thoracic and Cardiovascular Surgery, 4Internal Medicine and 5Diagnostic Radiology and 6Medical Research Center for Cancer Molecular Therapy, Dong-A University College of Medicine, Busan, Korea

Received: December 5, 2005
Accepted: February 21, 2006

Corresponding Author
Mee Sook Roh, M.D.
Department of Pathology, Dong-A University College of Medicine, 1-3-ga, Dongdaeshin-dong, Seo-gu, Busan 602-715, Korea
Tel: 051-240-2833
Fax: 051-243-7396
E-mail: msroh@dau.ac.kr

This paper was supported by the Dong-A University Research Fund in 2005.

The sodium/iodide symporter (NIS) is an intrinsic membrane glycoprotein that functions by co-transporting one I⁻ ion along with two Na⁺ ions into cells. The symporter plays a key role in thyroid hormone production by efficiently accumulating iodide from the circulation into thyrocytes. This is done against an electrochemical gradient. The iodide-concentrating activity of the thyroid gland allows for the use of radioiodide in thymid scintigraphy for the diagnosis of thyroid nodules, as well as for ablation of postsurgical remnants and the treatment of recurrent or metastatic thyroid cancer. Thyroidal NIS has been cloned, and NIS mRNA and protein expressions have been reported in a variety of extrathyroidal tissues, including the salivary and lacrimal glands, gastric mucosa, kidney and mammary gland, suggesting that iodide transport in these tissues is also mediated by the expression of functional NIS protein. It was generally thought until recently that the lack of I⁻ organification in the extrathyroidal tissues that functionally express NIS would preclude the use of radioiodide to treat cancer in these tissues. However, an important recent discovery is that NIS is functionally expressed in vivo in transgenic mouse mammary tumors, and NIS has been immunohistochemically detected in over 80% of human breast cancers. This raises the possibility of using radioiodide as a novel therapy for breast cancer. It also suggests that extrathyroidal NIS-expressing cancers might be targeted with radioiodide, if NIS is functionally present.

To the best of our knowledge, the NIS expression pattern in primary lung cancer has not yet been studied in Korea. We undertook this study to evaluate the expression pattern of NIS using immunohistochemistry, and to determine whether or not radioiodide might be an alternative diagnostic or therapeutic modality for treating primary lung cancer.
MATERIALS AND METHODS

Materials

We retrospectively examined 139 cases of primary lung cancer from the surgical pathology archival files of the Department of Pathology at Dong-A University Medical Center. The records were compiled from 2000 to 2004. No preoperative chemotherapy or radiotherapy had been administered in any of these cases. Standard lobectomy or pneumonectomy and lymph node dissections were performed in every case. Tissues, clinical records and pathological reports were obtained for all 139 cases. This study was approved by the institutional review board, and written informed consent was obtained from all of the subjects at the time of surgery. The hematoxylin and eosin-stained slides were reviewed in each case to confirm the original diagnosis, based on the World Health Organization (WHO) criteria.

Immunohistochemical evaluation

Immunohistochemical study for NIS was performed on formalin-fixed, paraffin-embedded, 4 µm-thick tissue sections, using the avidin-biotin-peroxidase complex method. The primary antibody was a mouse monoclonal antibody directed against NIS (Neomarkers, Fremont, CA, USA) used in a 1:50 dilution. Deparaffinization of all the sections was performed through a series of xylene baths, and rehydration was performed with a series of graded alcohol solutions. To enhance immunoreactivity, microwave antigen retrieval was performed at 750 W for 30 min in citrate buffer (pH6.0). After blocking endogenous peroxidase activity with 5% hydrogen peroxidase for 10 min, primary antibody incubation was performed for 1 hour at room temperature. Cap-Plus™ biotinylated secondary antibody (Zymed, USA) was applied for 30 min at room temperature, and then Cap-Plus™ streptavidin-HRP (Zymed, USA) was applied for 30 min at room temperature. After washing the tissue samples in Tris-buffered saline for 10 min, 3, 3’-diaminobenzidine was used as a chromogen, and Mayer’s hematoxylin counterstain was applied. Tissue from a Graves’ disease patient was used as a positive control.

Interpretation of immunohistochemical staining

Immunoreactivity for NIS expression was defined by the presence of granular cytoplasmic or membranous staining. The NIS staining intensity was classified as negative, weak, moderate, or strong. A tumor was defined as NIS positive if more than 10% of the cells showed moderate or strong staining. A negative staining result was defined as weak or absent staining in any number of cells, or moderate/strong staining in less than 10% of the cells.

Statistical analysis

Statistical analysis was performed with the Statistical Package Service Solution software (SPSS for Windows, Standard version 11.0, Chicago, IL, USA). χ² tests were performed to assess the relationship between the staining pattern of NIS and the clinicopathological characteristics. A p value less than 0.05 was considered to be statistically significant.

RESULTS

Clinicopathological characteristics

The ages of the 139 patients ranged from 25 to 75 years (median age: 60 years), and there were 104 men and 35 women. Tumor sizes ranged from 1 cm to 11 cm (median size: 3.7 cm); 63 cases had tumors ≤3 cm, and 76 cases had tumors >3 cm. Histologically, they consisted of 61 squamous cell carcinomas, 64 adenocarcinomas, 5 small cell carcinomas, 8 other carcinomas (3 large cell neuroendocrine carcinomas, 2 large cell carcinomas and 3 pleomorphic carcinomas) and 1 carcinosarcoma. Lymph node metastases were present in 52 of the 139 cases, and lymphovascular tumor invasion was seen in 69 of the 139 cases.

NIS expression and its relationship with the clinicopathological characteristics

Overall, NIS immunoreactivity was detected in 75 (54.0%) of the 139 cases. There was no NIS expression in normal alveolar tissue or bronchial mucous glands, and only weak and focal immunoreactivity was seen in the apical portion of the ciliated columnar cells in normal bronchial mucosa.

Twenty-three (37.7%) of the 61 squamous cell carcinomas, 49 (76.6%) of the 64 adenocarcinomas, 2 (40.0%) of the 5 small cell carcinomas and 3 (33.3%) of the 9 other carcinomas demonstrated positive NIS immunoreactivity. NIS expression was significantly associated with the histologic type (p<0.001) (Fig. 1). However, there were no significant associations between NIS expression and age, sex, tumor size, lymphovascular invasion or...
NIS Expression in Lung Cancer

DISCUSSION

NIS expression in normal and cancerous tissues is of keen interest because of its potential to serve as a specific conduit for an alternative diagnostic modality or for targeted therapeutic destruction of NIS-expressing malignant cells using radioiodide. Experimentally, NIS has been either transfected and/or transferred with an adenoviral or retroviral vector to test the concept of targeted ablative therapy. Novel evidence in prostate cancer cells that express exogenous NIS after adenoviral gene transfer has convincingly shown that a prolonged retention time and potential therapeutic efficacy for 131I are achievable in NIS-expressing extrathyroidal cells, even in the absence of I- organification. Evaluating NIS expression is helpful for predicting the effectiveness of radioiodide therapy, and it has the potential of enhancing patient management. Min et al.\(^{10}\) have reported that NIS immunohistochemical staining predicted 131I uptake in recurrent thyroid cancer with 50% sensitivity and 100% specificity, and that it showed a high positive predictive value for iodine uptake. Castro et al.\(^{11}\) have also reported that NIS immunostaining of primary thyroid tumors in patients with papillary and follicular thyroid cancers is useful for predicting the iodine trapping and concentration behavior of subsequent deposits of metastatic or recurrent cancer.

The ability of thyroid cancers to concentrate radioiodine is dependent, at least in part, upon the expression and functional integrity of the NIS. Compared with the thyroid gland, extrathyroidal tissues have a much lower ability to transport and concentrate iodide. Because identical NIS proteins are encoded in thyroid and extrathyroidal tissues, the diminished iodide transport seen in the extrathyroidal tissues may result from altered lymph node metastasis (Table 1).

Table 1. Relationship between the pathological characteristics and the NIS expression in 139 primary lung cancers

<table>
<thead>
<tr>
<th>Pathological characteristics</th>
<th>No. of cases</th>
<th>NIS expression</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histologic type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Squamous cell carcinoma</td>
<td>61</td>
<td>38 (62.3)</td>
<td>23 (37.7)</td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>64</td>
<td>15 (23.4)</td>
<td>49 (76.6)</td>
</tr>
<tr>
<td>Small cell carcinoma</td>
<td>5</td>
<td>3 (60.0)</td>
<td>2 (40.0)</td>
</tr>
<tr>
<td>Others</td>
<td>9</td>
<td>6 (66.7)</td>
<td>3 (33.3)</td>
</tr>
<tr>
<td>Tumor size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤3 cm</td>
<td>63</td>
<td>29 (46.0)</td>
<td>34 (54.0)</td>
</tr>
<tr>
<td>>3 cm</td>
<td>76</td>
<td>35 (46.1)</td>
<td>41 (53.9)</td>
</tr>
<tr>
<td>Lymph node metastasis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>87</td>
<td>40 (46.0)</td>
<td>47 (54.0)</td>
</tr>
<tr>
<td>Positive</td>
<td>52</td>
<td>24 (46.2)</td>
<td>28 (53.8)</td>
</tr>
<tr>
<td>Lymphovascular invasion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>70</td>
<td>33 (47.1)</td>
<td>37 (52.9)</td>
</tr>
<tr>
<td>Positive</td>
<td>69</td>
<td>31 (44.9)</td>
<td>38 (55.1)</td>
</tr>
</tbody>
</table>

NIS, sodium/iodide symporter; Others, 3 large cell neuroendocrine carcinomas, 2 large cell carcinomas, 3 pleomorphic carcinomas and 1 carcinosarcoma.

Fig. 1. Immunohistochemical studies for sodium iodide symporter show a positive cytoplasmic reaction in the adenocarcinoma (A), but a negative reaction in the squamous cell carcinoma (B).
NIS gene transcriptional activity. This could be a consequence of altered promoter structure or function, or the result of altered NIS mRNA or protein turnover. The variable and lower NIS transcriptional activity in the extrathyroidal tissues may be accounted for, at least in part, by thyroid-specific transcription factors that act on the NIS promoter to control the NIS gene expression in the thyroid gland. Thyroid transcription factor 1 (TTF-1) is a homeodomain-containing protein. It has been found to bind to all three thyroid-specific promoters and to activate their transcriptional activity. Spitzweg et al. have suggested that TTF-1 may be one of the factors capable of activating NIS gene expression in the thyroid gland, its absence thus accounting for the lower levels of NIS gene expression seen in extrathyroidal tissues. In lung cancer, a high frequency of TTF-1 expression has been observed in adenocarcinoma (75-80%), whereas squamous cell carcinomas and large cell carcinomas showed no, or low, TTF-1 expression. In our study, NIS expression was significantly higher in tissues of lung adenocarcinoma than in the other histologic types. These findings suggest that TTF-1 may be one of the factors capable of activating NIS gene expression in adenocarcinoma, and that its absence accounts for the lower levels of NIS expression in the other histologic types of lung cancer. However, small cell carcinomas, which usually have a high frequency of TTF-1 expression, showed only 40% NIS expression in our study. This may have been partially due to the small number of cases. Further studies are needed to more accurately determine the relation between NIS and TTF-1 for examining the mechanisms of tissue-specific NIS expression.

Positron emission tomography (PET) imaging using 18F-2-fluorom-2-deoxy-D-glucose (18F-FDG) has become an important non-invasive technique for evaluating focal pulmonary abnormalities, for staging lung cancer and for detecting recurrent neoplasms. 18F-FDG uptake is known to be closely related to the over-expression of Glut-1 in human cancers, including lung cancer. However, Glut-1 expression is lower in adenocarcinomas than in squamous cell carcinomas or large cell carcinomas of the lung. Lazar et al. have reported that 3 patients with normal Glut-1 gene expression also had 131I uptake in their metastatic lesions, whereas the other 3 patients with increased Glut-1 gene expression had no detectable 131I uptake. In our study, NIS expression was significantly higher in the adenocarcinomas compared to the other histologic types of tumors. Although we did not compare the expression patterns of Glut-1 and NIS, our findings may provide a rationale and biological basis for a role for PET and radioiodide scanning in the clinical management of lung cancer. We suggest that when immunohistochemical staining for NIS is positive, but the immunohistochemical staining for Glut-1 is negative, the most reliable imaging study might be the radioiodide scan, especially for evaluation of adenocarcinoma of the lung.

Although use of these radioisotopes has long been essential in the diagnosis and treatment of thyroid diseases, a few important factors need to be considered if radioiodide therapy is to be used with extrathyroidal tissues: 1) the degree of iodide transporting activity; 2) the ability of cells to accumulate and retain radioisotope, so as to effectively deliver its radiation dose, even in the absence of I organification; and, 3) the need to block the avid trapping of I by the intact thyroid gland. It should also be emphasized that the demonstration of NIS expression in a given tissue solely by immunohistochemistry does not necessarily mean that the NIS is functional in that tissue.

In conclusion, we have shown that NIS can be detected in lung cancers using immunohistochemistry, especially in adenocarcinoma of the lung. These findings may provide a helpful foundation for examining the potential clinical utility of radioiodide in evaluating and treating primary lung cancer. However, researchers will need to further define the regulatory mechanisms that render the NIS functional in tissues of lung cancer, so as to make the use of radionuclides feasible in the diagnosis or treatment of such patients.

REFERENCES

